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Abstract-Under a biaxial tension field. failure in a small region can give rise to simultaneous
rapid crack extension along multiple paths. To gain insight into this phenomenon. the dynamic
analysis of a cruciform crack growing from a point in a biaxial tension field is considered. An
analytic solution is at present not available. However. by treatina the cruciform arms as dis­
location arrays, the problem is reduced to a pair of coupled integral equations. By following a
scheme for plane crack analysis. these equations are uncoupled. and solved numerically by a
standard technique for singular integral equations. Examination of the solution indicates that
a plane crack is more likely to occur than a cruciform crack in a uniform biaxial tension field.
and the crack openings will be larger.

INTRODUCTION

The rapid branching of cracks from a main crack has received much attention re­
cently[l-4]. In a biaxial tension field. however, rapid crack extension may occur si­
multaneously along multiple paths radiating from a single localized failure initiation
region. An important example arises in projectile impacts on stressed panels[5]. To
gain insight into this phenomenon, we here consider a cruciform crack growing from
a point in an unbounded plane subjected to a biaxial tension field. The plane is linearly
elastic, isotropic, and homogeneous, and each collinear pair of arms in the cruciform
extends symmetrically at a constant subcritical speed.

The quasi-static problem of a fixed-length cruciform crack is solvable by standard
analytical methods[6]. However. fully dynamic analytical solutions to problems of in­
plane tractions specified on crack surfaces which meet at right angles are not presently
available[7]. Therefore it is important that the solution approach adopted allow a
straightforward and efficient numerical treatment. In this light, the cruciform arms are
here viewed as dislocation arrays distributed with respect to speed. This idea has been
used extensively[8-11] for dynamic fracture problems. In particular, [l1] treated a
cruciform crack driven by normal point forces moving along the crack surfaces.

As a first step in the problem solution, therefore, the next section considers a
general problem of dislocation arrays moving at constant speeds in opposite directions
from a point. In the following section the cruciform crack problem is formUlated, and
the dislocation solution is used to reduce the problem to coupled singular integral
equations. In subsequent sections these are decoupled and easily solved numerically.
A special case of the solution is used to study the dynamic stress intensity factors,
energy release rates and crack openings, and to compare them with those for a plane
crack.

DISLOCATIONS IN AN UNBOUNDED PLANE

For s s 0, where s is the time multiplied by the dilatational wave speed, an un­
bounded plane is at rest. For s > 0, dislocations of strength

n! (s - Iy I let
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extend by climb in both directions from the point (x, y) =0 along the y-axis at a constant
nondimensionalized speed e > O. Here the integer n ~ 0, (x, y) are the Cartesian
coordinates, and all speeds are nondimensionalized by dividing by the dilatational wave
speed. Dislocations extending along arbitrary paths at arbitrary speeds by both climb
and glide in an unbounded plane have been considered in [12). Using that work and
the x- and y-symmetry of the present problem, it is easily shown for n = 0 that the
normal stresses along, respectively, the positive y- and x-axes are

'IT
- m2yClx = AI(t, k)H(I - 1) + A",(t, k)H(I - m),
f.L

'IT
- m2xCly = BI(I, k)H(t - 1) + Bm(t, k)H(t - m),
f.L

where k = lIe, t = sly and t ;:; sIx in (2) and (3), respectively, and

(2)

(3)

T
2

( I I)
AI ;:; 2a t - k - t + k '

a(k2 + a2 )B I = kTM,

T ;:; 2t2
- m2

, M = 2a2 + m2
,

A = -2bt2 (_1 1_) (4)
m t-k t+k '

(k2 + b2 )B", = -4t2 bk, (5)

a = )(t2 - 1), b ;:; )(t2 - m2 ). (6)

Here H( ) is the Heaviside function, f.L is the shear modulus, and I and 11m are the
nondimensionalized dilatational and rotational wave speeds. For n > 0, (2) and (3) are
replaced by

'IT m
2 it it- - Clx = AI(q, k)(s - qy)n-I dq + Am(q, k)(s - qy)n-I dq,

f.L "I ",
'IT m

2 it It--Cly = B1(q, k)(s - qx)n-I dq + B",(q, k)(s - qx)n-I dq.
f.L n I ",

(7)

(8)

It should be noted that the first and second terms in A I are due to the dilatational waves
radiating from the dislocation edge y = es and reflections from the edge y = -es,
respectively. The two terms in A", are the rotational wave counterparts. These wave
pairs are combined in BI and Bm •

If !J. u and !J. v are the discontinuities in the normal displacement in going from,
respectively, x = 0- to x = 0+ across the positive y-axis and y = 0 - to Y = 0+
across the positive x-axis, then clearly

!J.u = nICs - kyy' H(I - k), !J.v = O. (9)

Equations (1)-(9) show that the dislocation problem displacements are homogeneous
of degree n in (x, y, s). Suppose now that the dislocations are replaced by continuous
arrays of dislocations whose nondimensionalized speeds are constants in the range (0,
c), and whose strengths are characterized by their speed. Moreover, suppose that the
resulting solution is also to exhibit x- and y-symmetry and displacement homogeneity
of degree n. It is readily shown by superposition then that eqn (9) would be replaced
by

!J.u ;:; n! f: F(p)(s - py)n dp, !J.v = 0 (10)

where F(p) is the characterization function, here defined in terms of inverse speed.
Equation (10) can also be viewed as the result of the (x, y, s)-independent operation

LX ( )F(p) dp. (11)
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Indeed, any field variable for the dislocation array problem can be obtained by operating
on the corresponding field variable for the dislocation problem with eqn (11).

The dislocation array problem gives, in effect, a solution representation for a gen­
eral problem which exhibits x- and y-symmetry, displacements of nth degree homo­
geneity in (x, y, s) and involves no disturbance except a normal displacement discon­
tinuity, which extends in opposite directions with nondimensionalized speed c along
the y-axis away from the origin and vanishes at its edges for n > O. A particular solution
depends on the choice of F(p).

THE CRUCIFORM CRACK

Consider an unbounded plane in equilibrium for s < 0 under a uniform biaxial
stress field defined in terms of Cartesian coordinates by

axy = 0 (al> 0). (12)

At s = 0, failure occurs at the origin (x, y) = 0 and cracks extend in both directions
along the y- and x-axes at the constant nondimensionalized subcritical speeds c. and
C2, respectively. The loading, crack and wave pattern for s c:= 0 are shown in Fig. 1.
The solution to this problem can be obtained by superposing the equilibrium solution
arising from eqns (12) and the solution to the problem of the same cracks extending
for s c:= 0 in a stress-free plane with surfaces subjected to the negatives of (12). This
latter problem has no characteristic length, and it can therefore be determined[13] that
the displacements are homogeneous of degree 1 in (x, y, s). Equations (12) guarantee
that the solutions will exhibit x- and y-symmetry. The cracks induce discontinuities in
the normal displacements which propagate in both directions along the x- and y-axes.
Moreover, these discontinuities vanish at the crack edges.

Comparison of these properties with those noted in the previous section show that
the solution to this problem can be represented by a superposition of the dislocation­
array solutions for n = I, where one solution has the roles of (l1u, I1v) and (ax, ay)

iii iii i 0-2

-------
1111 III

-------

Fig. I. Wave pattern cruciform crack in uniform biaxial tension.
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reversed. That is, eqns (8)-(10) give in view of (II)

au ;: L: FI(p)(s - py) dp, (13)

2! m2
{J-f = (00 FI(P)[ (1 AI(q, p) dp + rt

A",(q, p) dqJ dp
~ Jkl JI J",

- L~ F 2(p) [~t BI(q, p) dq + f~ Bm(q, p) dq] dp (14)

along the positive y-axis, where t ;: sly and kj = )/Cj. Analogous expressions hold for
avand (Jy along the positivex-ax,is, with the roles of(F.. F2), (x, y) and (k .. k2 ) reversed.
The problem analysis thus reduces to finding the characterization functions Fi so that

(15)

for x = 0, 0 < y < CIS and y = 0, 0 < x < C2S, respectively. Problem symmetry
guarantees that (15) and the condition {Jxy = 0 will be satisfied for x = 0, Iy I < CIS

and y = 0, Ix 1< C2S,

Substitution of (14) and its (Jy-analog in (15), recognizing that the aforementioned
symmetry also implies Fi(p) = Fj( -p) and employing the more convenient quantities
cjand

Gj(u)u = Fj(p),

yields the results

z ;: lit, u = IIp, v = lIq (16)

1Gj(u)A(u, z) du + LGAu)B(u, z) du ;: (0 < z< ej), (17)

where it is understood that i ;: (l, 2) whenj = (2, I), Ii denotes integration over the
range (-Ci' Ci) and

In (18) the quantities (A" Am, B" Bm) are now defined by

(18)

2b
Am ;: -4'

V

-MT
B I =-23 'av

2b
Bm ;: "3

V
(19)

and the A-integrations must be performed in the Cauchy principal value sense in eqn
(17).

Equation (17) defines a pair of coupled integral equations for the functions Gj.
Double integration and singular integrals of the Cauchy type are involved, and an
analytic solution is not presently available. However, by following an approach[l3] for
the analytic solution ofplane crack problems, the equations can be rewritten in a manner
which leads to extraction of the singular integrals from double integration and decou­
piing.

The decoupled equations also cannot at present be solved analytically, but are
similar in form to equations for a plane crack for which an analytic solution is known.
Therefore a numerical scheme can be devised which corresponds to the analytical
procedure. Moreover, this schemeinvolves a standard technique developed for singular
integral equations in quasi-static problems[l4].
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EQUATION DECOUPLING

Following [13], it is seen that unless the v-integration contribution in eqn (17) from
the range (z, el) vanishes, the left-hand side will not give a constant value. Consequently,
it is only the contributions from the ranges (c;, 1) and (c;, 11m) that give the particular
constant on the right-hand side. Equation (17) can therefore be replaced by the coupled
equation pair

i G;(u) LJ;~ du + j G.;(u)C(u, v) du = 0 (0 < 11 < c;), (21)

where

f G;(u)A(u, c;) du + LGj(u)B(u, Cj) du = (22)

R = 4ab - T2 (23)

and f denotes principal value integration. Here R is the Rayleigh function, and has a
double root at v = 0 and roots at v = ± (nondimensionalized Rayleigh wave speed).
However, it can be shown that,C(u, 0) = 0, while the subcritical crack edge speeds
considered here mean that v cannot assume Rayleigh speed values in eqns (21) and
(22).

Equation (21) can be viewed as an inhomogeneous singular Fredholm integral
equation of the first kind for G j • A formal solution[15] readily yields an expression for
G/ in terms of Gj • Substitution of this expression with the indices interchanged in eqns
(21) and (22), and performing the indicated u-integrations then yields the uncoupled
equation pair

~ G/(u) [_1_ - Cj(u, V)] du = 0
J; u-v

f G/(u) [A(u, c;) - Dj(u)] du =

where the functions Dj and Cj are defined by

(0 < v < CI)'

m2

- - 'rUJ';,
J.L

(24)

(25)

rt rllm

Dj(u) = J.'i B.(v)Aij(v, u) dv + )ei Bm(v)B/j(v, u) dv,

v
Cj(u, v) = R(MTAIj(v, u) - 4abB/iv, u)],

j( 2 2 2)3A ( ) _ v f C(u, w)j(c; - W
2

)3 dw
11 + a Cj ij lI, U - - 2 2 2 - ,

Trl v+aw w

and Bij follows from (28) by replacing a with b.

NUMERICAL SOLUTION

Setting (cj, CTj) = 0 reduces eqns (24) and (25) to

(26)

(27)

(28)

L G;(u) du = 0
J;u-v

(0 < v < C/), (29a)

f G/(u)A(u, e/) du = (29b)
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where i = 1 or i = 2. Equation (29) is clearly that for a plane crack, and the analytic
solution essentially proceeds as follows: In view of boundedness requirements as Iu I
- 00, the homogeneous condition (29a) can be solved for G; to within an arbitrary
constant factor[15]. The factor can then be determined by substituting the (29a) solution
into (29b). The result is

m2
'TT 0'; u2

G; = - I(c;) fJ. j(cr _ U2)3 ' (30)

I(c) = - 2~: K(b) + 2~2 (m 4
c

2 + ~:) K(a) - 2~4 (4 + ~:) E(a) + :2E(b), (31)

where (T, a, b) as defined by eqn (20) are functions of c while (K, E) are complete
elliptic integrals of the first and second kind of the arguments in parentheses.

This analytical procedure suggests the following numerical solution scheme for
(24) and (25): Based on the form of eqn (30), the substitutions

m2 [u2
] IG; = - - p/O'; 2 2 + g/( V) j( 2 2) ,

fJ. c; - u c; - u

are made, whereupon eqns (24) and (25) become

u
V =-,

c;
v =!!. (32)

c;

(0 < V < 1), (33)f g/( V) [V ~ V - c/CiCc/U, c;V)] j(l d_U U 2 ) = L;(c;V)

J dU 'TT
g/( V)[A(c/V, c;) - DiCc;V)] j(l _ U 2) - J/ = p; ,

L/(v) = 2c; f CHcj, w) v~~~;) [B;(v, w) + B:,,(v, w)] dw,

J; = f CHc}t w) [L: Bi(v, w) dv + L:,m B:,,(v, w) dV] dw,

RC'( ) - [MT 4ab] 2 2 3
; u, W - j(w2 + a2u2)3 - j(w2 + b2u2)3 wj(c; - w ) ,

(v2 + a2w2)j(v2 + a2cj)3Bi(v, w) = vB. (v),

(34)

(35)

(36)

(37)

(38)

where B:,,(v, w) follows from eqn (38) by replacing a with b and the subscript 1 with
m, and it is understood that f implies integration over the range (-1, 1). The Li and
Jrterms arise from performing the integrations involving the first term in the expression
for G;. The remaining V-integrations can formally be approximated by Chebyshev­
Gauss[16] quadrature so that eqns (33) and (34) are replaced by

(0 < V < 1), (39a)

(39b)

'TT
Va = cos 2N (2a - 1) (41)

where ~ denotes summation on the integer a over the range 0, N/2) , N> 1 is an
even integer and problem symmetry requires that g;(V) = gi( - V) while Va =
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- VN + I - a' The term DA follows from integrating A as

AI a - aCe) I 2 1 - aCe)
I!A(U, e) = 2" In a + aCe) - 2u4 (T + u ) In 1 + a(e)

aCe) - bee) Am I b - bee) TIl - bee)+ +-n +-n-~~

u2e2 2 b + bee) 2u4 1 + bee)

where the u-independence is understood unless explicity indicated otherwise.
By satisfying eqn (33) at the N/2 collocation points V = V~, where
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(42)

VIJ = cos ~ (~ = 1,2, ... , N/2) (43)

and 0 < Vp < 1, eqn (39a) yields a set of N/2 linear algebraic equations for the N/2
unknown values g;( Va)' These can then be substituted into (39b) to find the constant
Pit so that an approximation to G; can be constructed. The equation set arising from
(39a) is efficiently solved by Gaussian elimination because, although Va ¢ Vp, the lead
term in P;a gives a coefficient matrix with dominant diagonal elements, while the in­
tegrations (A;i> Bu, L;, J;) are well-behaved and easily performed numerically.

CRACK OPENING AND STRESS·INTENSITY FACTOR

Because the equilibrium solution involves no crack, the crack openings WI and
W2 along the positive y- and x-axes, respectively, are found from eqns (13), (16) and
(32) to be

z = ! (44b)
e;

where i = 0,2). Similarly, from eqns (14) and (6) the normal stresses SI and S2 along
these axes ahead (z > e;) of the crack edges are obtained as

1 f dVS; = -:; [P;O';g;(V)A(c;V, z) + PjO'jgj(V)B(cjV, z)] j(1 _ V 2)

+ P.a. [(I 'vB. (v) dv (11m vB (v) dv ]
J J Jz j(v2 + a2c})3 + Jz j(v2m+ b2c})3

- P;a;l'(c;, z) + -?- P;O'{(b' - a')j(z2 - cn
c;z

z P [4b'2 a' ] 1+ -24 ;a; - T (c;) -1--2 j( 2 2) ,
Cj - Cj Z - Cj

a r = a(z)H(1 - z), b' = b(z)H(1 - mz)

(45)

(46)

where; = (l, 2) whenj = (2, 1) while I' (c, z) follows from I(c) by replacing the complete
elliptic integrals K(a), K(b), E(a) and E(b) with

F(a, A,,)H(l - z), F(b, Ab)H(1 - mz).

E(a, A,,)H(1 - z), E(b, Ab)H(l - mz), (47)

respectively. Here F(u, v) and E(u, v) are incomplete elliptic integrals of the first and
second kind of modulus u and argument v, and (a, b) are understood to be functions
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of c unless specified otherwise. The arguments are defined by

a sin Au == a(z). b sin Ab == b(z). (48)

The v-integrations in eqn (45) are easily performed numerically. while the V-integrations
can be approximated by Chebyshev-Gaussian quadrature as

2 2
- N P;CT; L g;(Va)D",(z, c;Va) - N PjCTj L gj(Va)DB(z. cjVu ),

D ( ) BI I I + a(c)a I (2 2) I I - a(c)
B U, C == - n - - - u n --..:.....;,

2u 1 - a(c)a 2u4 I + a(c)

b(c) - a(c) Am I I - b(c)b T I I - b(c)+ +-n +-n--":""';'
U2C2 2 I + b(c)b 2u4 I + b(c) .

(49)

(50)

Introduction of eqn (49) allows S; to be calculated in terms of the collocation values
g;( Va)'

Study of (49) shows that the last term in (45) is singular as Z - c;+. It is then
easily shown that

S
CT/Kii

/-
j(z - c;) ,

K _ P;R(c;)
Ii - j(2cYcta(c;)

(5Ia)

(Sib)

as z - c; +, where Kii is the mode-I dynamic stress intensity factor. It is noted that
Kii vanishes when c; reaches the Rayleigh wave speed, as for the plane crack[17].

For a plane crack extending along either the positive y- or x-axis with nondimen­
sionalized subcritical speed c in the uniform plane hydrostatic tension field CT) == CT2 ==
CT, it is easily shown[13] that eqns (44a) and (5Ib) are replaced by

c ~ W 11'
- - - == - j(l - Z2),
m2 CT S I(c)

K _ 11'R(c)
f - j(2c)3c2a(c)/(c) '

z
Z == -,

c

(52a)

(52b)

(52c)

where 1 is defined by eqn (31). For insight into cruciform crack opening and dynamic
stress intensity factor behavior-and how it compares with that for the plane crack­
eqns (44a) and (5Ia) are plotted in Fig. 2(a) and eqns (Sib) and (52b) are plotted in Fig.
2(b) for the special case c, = C2 == C, CTI == CT2 = CT. Here the symbols (+) and (-)
refer to the cruciform and plane crack quantities, respectively, while m is given the
typical value j3, which means that the nondimensionalized Rayleigh speed has the
value 0.5308.

Figures 2(a) and 2(b) show that the cruciform crack quantities vary in much the
same manner as those for the plane crack with respect to crack edge speed and the
dynamic similarity variable Z. Several differences, however, are apparent:

The plane crack intensity factor for a given crack speed and the plane crack opening
for a given Z are always greater, although the differences diminish with increasing
crack speed. Moreover, the W-curve slopes indicate that the cruciform crack surface
has a more wedge-like profile. The W-behavior differences may follow from the fact
that, in the cruciform crack, the collinear tensile stress tends to close through the
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Fig. 2. (a) Crack openings for cruciform (+)and plane ( - ) cracks. (b) Dynamic stress intensity
factors for cruciform (+) and plane (- ) cracks.

Poisson effect a particular crack arm. The intensity factor differences agree with quasi­
static results for a cruciform crack hydrostatic tension configuration in uniform uniaxial
anti-plane shear[18]. Thus, a fracture toughness criterion would predict that a plane
crack is more likely to extend in a uniform plane hydrostatic tension field than are the
collinear arms of a cruciform crack.

Fracture criteria are also often based on the energy release rate[l9]. It is easily
shown that the total rate (per unit of out-of-plane length) for the cruciform crack,
denoted here by Ee , can be obtained from eqns (44) and (51) as

(53)

The corresponding quantity for the plane crack follows merely by removing one of the
terms in brackets and dropping the nonroman subscripts on the remaining term. The
ratio of these rates for the special case treated above is then

(54)

In view of Fig. 2(b), eqn (54) indicates that the plane crack extension is associated with
larger release rates than is the cruciform crack in the uniform plane hydrostatic tension
fieM.

SUMMARY

The results derived here suggest that plane crack extension is, at once, more likely
to occur and more likely to generate larger crack openings than a cruciform crack for
the special tension field considered. To be sure, these results are for constant-speed
rectilinear extension. Moreover, the special field in itself has no preferred crack
extension direction. However, the fracture scenario presented here assumed sudden
catastrophic failure initiation in a localized region, e.g. [5]. In such circumstances,
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fracture is almost instantaneous, its initial direction is largely determined by local ef­
fects, and it proceeds for a time in this direction at a rapid, nearly constant speed.

The plane crack results, often used here, are contained in a special case in the
results of [13]. The plane crack problem was first solved by Broberg[20], of course.
However, the method and form of the solutions in [13] were more convenient for
purposes of the present analysis.

It should be noted that the cruciform crack does not mathematically reduce to the
plane crack case merely by removing 0'( or 0'2 due to Poisson's ratio coupling between
the normal stresses O'x and 0').. As in most fracture analysis, it is a mathematical model
with an assumed geometry; the validity of basic geometrical details may depend on the
additional conditions imposed on the mathematical analysis in view offracture criteria.

It should also be noted that the dynamic stress intensity factor and crack opening
values obtained here varied by no more than 1% when the number of collocation points
reached 14 (N = 30). One reason for this efficiency was that, as in [II], the unknown
characterization function G; was resolved into a component which had essentially the
plane crack solution form and an unknown correction function, gj. The plane crack
solution form carried the crack edge singularity in the solution field. Therefore, the
function Kj could act as a nonsingular perturbation although, clearly, its effect on the
solution field through the factor P; is not a perturbation in the often-used sense of the
term. The solution scheme adopted here can be used for problems in which the dis­
placements have a degree of homogeneity greater than I.
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